

Evolution of Soliton Measurement and Modelling

Presented by: Steve Buchan Kenji Shimizu

'With some deference to Garvey'

RPS MetOcean

4th IWWHF –

Soliton Measurements & Modelling

For those who came in late the previous presentation:

- Demonstrated the engineering need for soliton criteria
- Illustrated the plethora of soliton 'types' at North Rankin location
- Noted that measurements alone are insufficient
 - Can't detail spatial structure
 - Can't provide 'enough' events for reliable extreme analysis
 - Can't extrapolate to adjacent sites
- Hence the need for nonhydrostatic modelling
- Trialled MITgcm provides the mechanism, but not (yet) with accuracy.

RPS Presentation Structure

- Discussion of recent measurements on Outer Exmouth Plateau
- Recognition of Indonesian Archipelago as potential source for (Australian) North West Shelf internal waves
- Reconfiguration of the NWS MITgcm modelling domain to include these possible source regions
- Resulting improvements to internal solitary wave simulation
- Qualitative comparisons to North Rankin and Shelf Break measurements

RPS Outer Exmouth Plateau Measurements

- I2 month Metocean Measurement programme to support planning for deepwater drilling operations (for Shell Australia)
- Measurements comprised
 - Meteorological (RPS buoy) measurements
 - Directional (Datawell Waverider) buoy measurements
 - Through-Water-Column current, temperature and salinity measurements
- In 1250 m of water
- The programme returned almost 100% good data.

Current Meter Mooring

Outer Exmouth Plateau - Currents

- 8 x CM04s
- 1 x 300 kHz ADCP
- 10 x temp loggers
- 2 x CT loggers
- I x tide gauge

in 1250 m of water.

RPS Two Events of Major Note

- I. (Almost) direct hit by Tropical Cyclone Quang
- 2. Extraordinary week of internal solitary wave activity.

Outer Exmouth Surface Currents

RPS

Exmouth Surface Currents – TC Quang

RPS

Job: J3003

RPS

rpsmetocean.com

Job: J3003

Peak Wind Speed $U_{10} = 28 \text{ m s}^{-1}$

Peak Current Speed $V_s = 0.9 \text{ m s}^{-1}$

Current Direction - 1230 m ASB Current Direction - 1150 m ASB irection - 115 (° towards)

Current Speed - 1230 m ASB Current Speed - 1150 m ASB (m s⁻¹)

Seawater Temperature - 1230 m ASB Seawater Temperature - 1150 m ASB erature -(°C) Temp

RPS Exmouth Surface Currents – Soliton Sequence

The Super Soliton Series

Their Likely Source

- Thermal structure shows they are Vertical Mode I (VMI).
- Peak speeds in upper layer in the direction of propagation.
- Back-track along Great Circle Route.
- Lombok and Sape Straits (both known internal wave generation locations) bound the potential generation arc.
- Argo Data provides 'typical' density structure.
- Simple KdV calculations suggest a propagation speed of 2.5 m s⁻¹.
- Propagation time ~ 6 days.

Their Likely Source

- Thermal structure shows they are Vertical Mode I (VMI).
- Peak speeds in upper layer in the direction of propagation.
- Back-track along Great Circle Route.
- Lombok and Sape Straits (both known internal wave generation locations) bound the potential generation arc.
- Argo Data provides 'typical' density structure.
- Simple KdV calculations suggest a propagation speed of 2.5 m s⁻¹.
- Propagation time ~ 6 days.

Lombok Strait

Known area of internal wave generation.

- Shallow sills (~ 200 m)
- Strong Tidal currents in between Islands

Their Likely Source

- Thermal structure shows they are Vertical Mode I (VMI).
- Peak speeds in upper layer in the direction of propagation.
- Back-track along Great Circle Route.
- Lombok and Sape Straits (both known internal wave generation locations) bound the potential generation arc.
- Argo Data provides 'typical' density structure.
- Simple KdV calculations suggest a propagation speed of 2.5 m s⁻¹.
- Propagation time ~ 6 days.

Argo Float Trajectory from 26/4/12 – 26/07/15

Lombok Strait to Outer Exmouth - rough KdV				
Cales				
Trial		I	2	3
Nominal Depth (m)		1250	1500	2000
ul	m s-l	I	I	I
Bearing	0	205	205	205
hl	m	150	150	150
h2	m	1100	1350	1850
rhol	kg m ⁻³	1025	1025	1025
rho2	kg m ⁻³	1030	1030	1030
С	m s ⁻¹	2.51	2.54	2.57
<u></u>		251	2.54	2 5 7
CU	m s-	2.51	2.54	2.57
eta	m	69.47	67.50	65.29
u2	m s ⁻¹	0.16	0.13	0.09
Propagation Distance	km	1300	1300	1300
Propagation Time	days	6.0	5.9	5.9

Phase Speed	~ 2.5 m s ⁻¹
Propagation Time	<mark>∼6 days</mark>

Upper Level Speed ~ 1 m s⁻¹ Lower Level Speed ~ 0.15 m s⁻¹

rpsmetocean.com

Coriolis data centre - 27/07/2015

Their Likely Source

- Thermal structure shows they are Vertical Mode I (VMI).
- Peak speeds in upper layer in the direction of propagation.
- Back-track along Great Circle Route.
- Lombok and Sape Straits (both known internal wave generation locations) bound the potential generation arc.
- Argo Data provides 'typical' density structure.
- Simple KdV calculations suggest a propagation speed of 2.5 m s⁻¹.
- Propagation time ~ 6 days.

The Upshot

Long-travelled solitons have the potential to generate higher riser loadings than tropical cyclones in deep waters off Australia's North West Shelf

We believe that we need to include Indonesian Straits in any comprehensive soliton modelling for the North West Shelf

We can establish this via running of the "adjoint" of a hydrodynamic model (we chose MITgcm).

We focused on data from IMOS PIL200 location, because these data are publicly available.

Locations of Measured Data

PIL200, PIL100 and PIL50 – IMOS data in 200, 100 and 50 m depth, respectively

RPS

NRA – RPS data in 125 m depth

Slope, Break and Shelf – ARC data in 100, 80 and 78 m depth, respectively.

RPS Adjoint MITgcm Modelling

The Adjoint of MITgcm calculates the sensitivity of a cost function to model state variables and input data.

Model State Variables and input data include

- tidal forcing
- density structure
- bathymetry (seabed slope)
- The Cost Function is defined as
 - the (VMI) isopycnal displacement at PIL200 location

Sensitivity can be expressed wrt vertical modes, the theory of which relates 'forcing' (of VMI) from the barotropic tide (VM0).

RPS The Adjoint of the MITgcm Model

Is used to assess the sources of energy affecting internal wave motion - in this study - at PIL200 location.

The Cost Function (the only non-zero initial condition in the model domain) is set as the positive VMI isopycnal displacement about PIL200 location.

The Forcing Function is a direct computation of the efficiency of energy conversion from VM0 (barotropic) to VM1 (baroclinic) motion, given bottom slope and density structure.

The Sensitivity of the Cost Function to remote Forcing is calculated by stepping the model 'backwards' in time.

RPS Forcing Function for M₂ Internal Tide

RPS Sensitivity of PIL200 ISW - Animation

RPS Sensitivity of ISW Vertical Displacement

RPS Regional Contribution to ISWs at PIL200

The Source Function describes the regional contribution to VM1 M_2 tide at PIL200 location.

In time domain (for time lag τ), it is the convolution of the Sensitivity and the Forcing Function.

In the frequency domain, at a given frequency ω (in this case the tidal M₂ frequency), it is the product of the Fourier transform of the Sensitivity and the Forcing Function.

RPS Frequency Response Analysis

In frequency domain (applying the convolution theorem in Fourier Theory)

RPS Sensitivity x Forcing function for PIL200

Source Function for ISWs at PIL200

RPS

RPS Spatial Integration of the Source Function

The Source Function can be integrated over any horizontal domain to establish the relative contribution of that domain to the Cost Function (the VM1 M_2 tide) at PIL200 location.

Results are illustrated in the following table.

RPS Sources of M₂ Internal Tide at PIL200

VM1 M2 tide at PIL200

Region		Contribution (m)	
Australian North West Shelf (<1500 m deep)			
	Lower North West Shelf (west of ~120 °E)	-6 + 18 i	
	Upper North West Shelf (east of ~120 °E)	-1 - 1 i	
	Subtotal	-7 + 17 i	
Indon	esian region (<1500 m deep)		
	Lombok & Bali Straits	7 + 3 i	
	Sape Strait	3 + 2 i	
	Alas Strait	1 - 0 i	
	Other	0 - 0 i	
	Subtotal	11 + 5 i	
Deep open ocean (>1500 m deep)		-2 - 2 i	
Total		2 + 20 i	

We have established that the Indonesian Straits are a significant source of internal tidal energy propagating to Australia's North West Shelf.

Any modelling of Internal Solitary Waves on the North West Shelf will require inclusion of these source regions in the model domain.

RPS Original (2015) Model Grid

Revised Model Grid

(Rough) Comparison with Measurements

RPS

RPS What we have learned

- Established that Indonesian Straits are important source regions of internal waves affecting Australia's North West Shelf
- 2. ISWs are highly sensitive to stratification. Stratification is very difficult to model (without drift)
- 3. Solitons lose lateral coherence as they propagate inshore
- 4. MITgcm requires further enhancement before it can reliably hindcast Internal Solitary Waves

Thank you

For further information: <u>stevejbuchan@hotmail.com</u> kenji.shimizu.rc@gmail.com